Quasi-Stationary, Extreme-Rain-Producing Convective Systems Associated with Midlevel Cyclonic Circulations

نویسندگان

  • RUSS S. SCHUMACHER
  • RICHARD H. JOHNSON
چکیده

This study identifies and examines the common characteristics of several nocturnal midlatitude mesoscale convective systems (MCSs) that developed near mesoscale convective vortices (MCVs) or cutoff lows. All of these MCSs were organized into convective clusters or lines that exhibited back-building behavior, remained nearly stationary for 6–12 h, and produced locally excessive rainfall (greater than 200 mm in 12 h) that led to substantial flash flooding. Examination of individual events and composite analysis reveals that the MCSs formed in thermodynamic environments characterized by very high relative humidity at low levels, moderate convective available potential energy (CAPE), and very little convective inhibition (CIN). In each case, the presence of a strong low-level jet (LLJ) and weak midlevel winds led to a pronounced reversal of the wind shear vector with height. Most of the MCSs formed without any front or preexisting surface boundary in the vicinity, though weak boundaries were apparent in two of the cases. Lifting and destabilization associated with the interaction between the LLJ and the midlevel circulation assisted in initiating and maintaining the slow-moving MCSs. Based on the cases analyzed in this study and past events described in the literature, a conceptual model of the important processes that lead to extreme rainfall near midlevel circulations is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms for Quasi-Stationary Behavior in Simulated Heavy-Rain-Producing Convective Systems

In this study, idealized numerical simulations are used to identify the processes responsible for initiating, organizing, and maintaining quasi-stationary convective systems that produce locally extreme rainfall amounts. Of particular interest are those convective systems that have been observed to occur near mesoscale convective vortices (MCVs) and other midlevel circulations. To simulate the ...

متن کامل

Organization and Environmental Properties of Extreme-Rain-Producing Mesoscale Convective Systems

This study examines the radar-indicated structures and other features of extreme rain events in the United States over a 3-yr period. A rainfall event is defined as “extreme” when the 24-h precipitation total at one or more stations surpasses the 50-yr recurrence interval amount for that location. This definition yields 116 such cases from 1999 to 2001 in the area east of the Rocky Mountains, e...

متن کامل

Scale Interactions during the Formation of Typhoon Irving

The development of Typhoon Irving is investigated using a variety of data, including special research aircraft data from the Tropical Cyclone Motion (TCM-92) experiment, objective analyses, satellite data, and traditional surface and sounding data. The development process is treated as a dry-adiabatic vortex dynamics problem, and it is found that environmental and mesoscale dynamics mutually en...

متن کامل

Mesoscale Processes Contributing to Extreme Rainfall in a Midlatitude Warm-Season Flash Flood*

Observations and numerical simulations are used to investigate the atmospheric processes that led to extreme rainfall and resultant destructive flash flooding in eastern Missouri on 6–7 May 2000. In this event, a quasi-stationary mesoscale convective system (MCS) developed near a preexisting mesoscale convective vortex (MCV) in a very moist environment that included a strong low-level jet (LLJ)...

متن کامل

Extreme Convection of the Near-Equatorial Americas, Africa, and Adjoining Oceans as seen by TRMM

This study documents the preferred location and diurnal cycle of extreme convective storms that occur in the tropical band containing the east Pacific Ocean, Central and South America, the Atlantic Ocean, and northern Africa. Data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar show three types of convective-stratiform structures that constitute extreme convective events...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009